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Supplementary Figure S1 | Effect of parameter d on Zpeak and E. (a) Ypeak against the 

indicated ranges of a and b. c and d did not affect Ypeak. The diagonal pattern of the contour 

line indicates that Ypeak was determined by a/b. (b) Ypeak for a/b. (c, e, and g) Zpeak against 

the indicated ranges of a and b when d was set at 0.1, 0.01, and 0.001, respectively. The 

value of c was the same as that of d. The white dashed lines indicate when a or b equals d. 

(d, f, and h) Signal transfer efficiency, E, against the indicated ranges of a and b when d 

was set at 0.1, 0.01, and 0.001, respectively. The value of c was the same as that of d. d 

affected Zpeak and E, but did not affect the condition when Zpeak became attenuated. 
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Supplementary Figure S2 | Approximate analytic solution of Zpeak and estimation of E. 
(a) The parameter space was divided into three areas. We obtained an approximate analytic 

solution of Zpeak for each area (see Supplementary Note 1). (b) Approximate analytical 

solution of Zpeak. The white dashed lines indicate the borders of the areas. (c) Ratio of the 

numerical and the approximate analytic solution of Zpeak. The approximate analytical 

solution of Zpeak was very similar to the numerical solution of Zpeak. The approximation 

became inaccurate around the borders of the areas, but the difference between the 

numerical and analytical values was less than about 35%. (d) Estimation of E. The 

efficiency, E, is not a simple ratio of the peak amplitudes of a single set of upstream and 

downstream time courses in different scales, but should be scaled by k. We identified a 

means of estimating E from a single set of upstream and downstream time courses. Based 

on the approximate analytical solution of Z, the efficiency, E, was expressed in terms of the 

difference in the peak times, ∆t (defined as tZ - tY), and the parameters a and b (see 

Supplementary Note 1). These values could be obtained from the experimental data of a 

single set of upstream and downstream time courses. We estimated E from the numerical 

value of ∆t and the parameters a and b. This value was denoted as E’ and is shown in 

colour. (e) Ratio of E’ to the numerical value of E. E’ was very similar to E, but the ratio 

became extremely low around the borders of areas II and III. (f) Estimation of E using an 

ad hoc substitution. We introduced an ad hoc substitution to estimate E (see Supplementary 

Note 1) and estimated the value of E based on the new expression. This value was denoted 

as E’’ and is shown in colour. (g) Ratio of E’’ to the numerical value of E. E’’ was very 

similar to E, and the ratio was closer to 1 than the case for E’, indicating an improvement in 

the estimation. This finding indicates that the signal transfer efficiency E can be estimated 

from a single set of time courses of Y and Z. 
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Supplementary Figure S3 | The efficiency E can also be estimated from the duration 

of upstream signal, t1/2. (a) The duration of upstream signal t1/2 is the time at which the 

value of Y has decreased to half of the Ypeak. (b) t1/2 for the indicated ranges of a and b. The 

colour indicates t1/2 on a logarithmic scale. The concentric pattern of t1/2 was similar to that 

of the efficiency E (Fig. 2d) (c) Relationship between E and t1/2. All the data points were 

plotted in the small area bounded by the red and blue dashed lines. The green dashed line 

was the midpoint of the red and blue dashed lines. The black solid line shows a sigmoid 

curve fitted to the green broken line. These lines moved horizontally depending on the 

value of d, and the value of E was about 50% when the value of t1/2 was the same as that of 

1/d. (d) Effect of t1/2 and 1/d on E. The value of t1/2 and 1/d are shown using a logarithmic 

scale. The white dashed line corresponds to the black solid line in c. The efficiency E 

became smaller when t1/2 or d became smaller. The diagonal pattern of the contour line 

indicates that E can be estimated by the ratio of t1/2 and 1/d. (e) Estimation of the efficiency 

E from t1/2. The estimated E (E’’’) was obtained from the numerical value of t1/2 and the 

equation for the fitted sigmoid curve in c, 
932.0
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+

=
dt

E . (f) Ratio of E’’’ to the 

numerical value of E. The difference was as much as 10%, indicating that the efficiency E 

can be reasonably estimated using this method when d is already known. This method does 

not require the parameters a, b, nor the time course of Z.  
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Supplementary Figure S4 | Effect of the parameters on the EC50 values and the 

increase in sensitivity. (a-c) Numerical results of EC50 for Ypeak, EC50 for Zpeak, and Si, 

respectively, against the indicated ranges of b and d. The values are shown in colour using a 

logarithmic scale. The white dot and dashed line indicate the parameters for Fig. 4a-d and e, 

respectively. The diagonal pattern of the contour line in c indicates that Si is determined by 

b/d. (d-f) Analytical solution of EC50 for Ypeak, approximated analytical solutions of EC50 

for Zpeak and Si, respectively. Please note that the approximation did not affect the 

qualitative characteristics of EC50 for Zpeak and Si. (g) The red and blue line indicates 

numerical and analytical solutions of Si , respectively, for the indicated d. The black circles 

indicate the parameters for Fig. 4a-d. 
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Supplementary Figure S5 | Effect of the parameters on the IC50 values and the 

decrease in sensitivity. (a and b) IC50 values for Ypeak and Zpeak, respectively, against the 

indicated ranges of q and d are shown in colour using a logarithmic scale. Both a and b 

were set at 1. The vertical and horizontal white dashed lines indicate the parameters for Fig. 

5f,g, respectively. The white circle and cross indicate the parameters for Fig. 5b-e and 

Supplementary Fig. S6, respectively. (c) Sd for the indicated ranges of q and d is shown in 

colour using a logarithmic scale. The decrease in sensitivity was suppressed when d was 

larger than q and when these parameters were relatively small. (d) Conditions for the 

suppression of the decrease in sensitivity for a variety of other parameters. Each panel 

indicates the Sd against the indicated range of q and d using logarithmic scales for the 

indicated parameters a and b. The middle panel in the red box is the same as in c, although 

the colour scale is different. The conditions were not affected by the parameters a and b, 

although Sd depended on these parameters, indicating that the relationship between d and q 

is an essential and robust index for the suppression of the decrease in sensitivity. When q 

was relatively small, the dose of the inhibitor induced time courses of Y that were almost 

proportional with each other (Supplementary Fig. S6). When the time courses of the 

upstream molecule of the consecutive first-order reaction were proportional with each other, 

that of the downstream molecule was also proportional with each other. Thus, the 

proportional relationship was conserved between the upstream and downstream molecules, 

resulting in the suppression of the decrease in sensitivity. The proportional relationship 

gradually disappeared with time, and the duration of the proportional relationship became 

shorter when q became larger. When d became smaller, the peak time of Z became later and 

the non-proportional part of the time courses of Y began to affect the Zpeak, resulting in a 

decrease in sensitivity. In this way, the balance between d and q determined the suppression 

of the decrease in sensitivity. 
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Supplementary Figure S6 | The decrease in the sensitivity to an inhibitor was 

suppressed when q was small. (a and b) Time courses of Y and Z, respectively, for the 

indicated range of p. The inset in a indicates the value of p. q was changed to 0.0001 from 

Fig. 5b,c. (c) Dose-response curve for Ypeak (red line) and Zpeak (blue line) for the inhibitor. 

Changing the value of p can be regarded as changing the concentration of the inhibitor. 

Ypeak and Zpeak were normalized according to the maximal responses. 
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Supplementary Figure S7 | The inhibitor model was capable of reproducing the 

experimental data. (a and b) Time courses of Y and Z, respectively, in the inhibitor model 

(lines) and in experiments (points). The inhibitor, Y and Z in the inhibitor model 

corresponded to lapatinib, phosphorylated Akt and S6, respectively, and the parameters for 

the inhibitor model were fitted using the experimental data (see Supplementary Note 1). 

The inhibitor concentrations are shown in the inset. The time courses of Y and Z 

successfully reproduced those of phosphorylated Akt and S6, respectively. (c and d) 

Dose-response curves of Ypeak and Zpeak, respectively. Ypeak and Zpeak in the inhibitor model 

(red solid line) were fitted using a sigmoid curve (red dashed line). The blue lines show the 

peak amplitude of phosphorylated Akt (c) and S6 (d) in the experimental data. The IC50 for 

Ypeak was about 61 nM, and the IC50 for Zpeak was about 342 nM, which was 5.6 times 

higher than that of Ypeak. These values were very similar to the experimental data, 

suggesting that the decrease in the IC50 observed in the experiment was caused by the 

consecutive first-order reaction. 
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Supplementary Figure S8 | The downstream molecule is less sensitive to an inhibitor 

than the upstream molecule under physiological-like conditions. (a) In vivo inhibitor 

model. The in vivo inhibitor model was created by adding turnover reactions to the inhibitor 

model, while the maintaining the same relation between Y and Z (see Methods and 

Supplementary Note 1). The in vivo inhibitor model had a new rate constant, r, 

corresponding to the synthesis and degradation rate constants of X. The turnover reactions 

for X are needed for constitutive activation. The notations are the same as in Fig. 1b. (b and 

c) Time courses of Y (b) and Z (c) in response to the indicated p (see inset). Note that p can 

be regarded as the concentration of the inhibitor. The addition of the inhibitor resulted in a 

transient decrease in both Y and Z. Both Ypeak and Zpeak decreased as p increased. Note that 

here Ypeak and Zpeak denoted the decreased peak and the lowest value. The values for a, b, c, 

d, q, and r were set at 0.1, 0.1, 0.01, 0.01, 1 and 0.0001, respectively. The activator was 

administered and reached an equilibrium before inhibition. (d) Dose-response curves of 

Ypeak (red line) and Zpeak (blue line) for the inhibitor. The dashed lines indicate the IC50 

values for Ypeak and Zpeak. The IC50 for Ypeak was 3.49 and that for Zpeak was 20.6, indicating 

that Zpeak was less sensitive to the inhibitor than Ypeak under physiological-like conditions. 

The maximal values of Ypeak and Zpeak were normalized to 1. 



 

Supplementary Table S1. Decoupling conditions. The time courses 1Y  and 2Y  have the 

parameters ),( 11 ba  and ),( 22 ba , respectively. The decoupling effect is defined as 

(2)>(1) peakpeak YY  and (2)<(1) peakpeak ZZ . The parameters are classified in Areas I to III, 

and the conditions for the decoupling effect are listed as follows. Some conditions are written 

in simple form using equation (S24). All the conditions have the relationship of 
2

2

1

1 >
b

a

b

a
 [1], 

which comes from (2)>(1) peakpeak YY . A contradiction can be noted in the conditions (1), (2), 

(3), and (8), indicating that the decoupling effect cannot occur under these conditions. 

 

Parameter area (2)<(1) peakpeak ZZ  Parameters (1) Parameters (2) Cond. 

No. ),( 11 ba  ),( 22 ba  [2] [3] [4] [5] [6] 

(1) Area I Area I 
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1 <
b

a

b

a
 da <1

 db <1
 da <2
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Supplementary Note 1 

Consecutive first-order reaction 

A consecutive first-order reaction, which is called a low-pass filter in the field of engineering, 

can be represented as  

 ),(1// φττ → → GF
k  

where k  denotes the gain of the filter and τ  denotes the time constant of the filter. The 

output of the reaction, )(tG , is dependent on the input, )(tF , and the temporal evolution of 

)(tG  is described by the ordinary differential equation as follows:  

 ).()(=
)(

tGtFk
dt

tdG
−⋅τ  (S1) 

We obtained an analytical solution for )(tG  as follows:  

 .e)(e=)(
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The gain k  scales the amplitude of )(tG  uniformly but does not affect the shape of 

the time course of )(tG . Therefore, the gain k  does not affect the results in the main text.  

 

 

Activator model 

The activator model can be described using the following ordinary differential equations:  
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where parameters cba ,, , and d  are the rate constants of the synthesis of Y , the 

degradation of Y , synthesis of Z, and the degradation of Z , respectively (see Fig. 1b). 

Comparing the equation of dtdZ /  with equation (S1), following relationships were found: 
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 The initial conditions were given as follows:  
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 and the analytical solution of the equations is  
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 where )( dba ≠≠ .  

Note that the parameter x  scales the amplitudes of all the time coureses uniformly 

but does not affect the shape of the time coureses. Therefore, the paramter x  does not affect 

the results in the main text, and we set 1=x  unless otherwise specified. 

Y and Z were regarded as amounts of activated upstream and downstream molecules 

of a signaling pathway, respectively. In this study, we focused on the relationships between Y 

and Z, and therefore the biological meaning of X was not specified. We changed the time 

course of Y by  changing a and b, and examined the response of Zpeak in main text.  

We can introduce more detailed expression of the activator model using â ,  
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and then obtained the analytical solutions as  
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Thus, the paramter â  scales the amplitudes of time coureses of Y  and Z  uniformly but 

does not affect the shape of the time coureses. Therefore, the paramter â  does not affect the 

results in the main text, and we set aa =ˆ  in this study. 

 

 

Peak time and peak amplitude of the activator model 

The time course of Y  has a peak at the peak time Yt , and Yt  is given by the solution of the 

equation:  

 ( )Y
bt

Y
at

ba
ab

a

dt

dY −−
+−

−
ee=  

 0,=  (S4) 

 hence,  
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 and from equation (S3), the peak amplitude peakY  can be obtained,  

 )(= Ypeak tYY  
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Next, we assumed that the time course of Z  has a single peak ( peakZ ) at 
Ztt = . 

Zt  

is given by the solution of the equation 0=)/( dttdZ Z
 . But the equation 0=/dtdZ  is 

difficult to solve for t . Therefore, we introduced an approximation of Z  using the 

symmetry and singularity of Z , and divided the parameter space as follows:  
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In area I, we introduced a new parameter, h , as had /= . From equation (S7),  
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The Maclaurin series expansion for the above equation under the conditions in (S8) is 



given by,  
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In Area I, the approximation of Z  using equation (S9) is equal to Y  (equation (S3)) 

without scaling factor dc/ , hence,  
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In area II , we set the parameter h  as hda /= . From equation (S7),  
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The Maclaurin series expansion for the above equation under the conditions in (S12) 

is given by,  
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In Area II , we have  
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In area III , we set the parameter h  as hdb /= . From equation (S7),  
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 and from equation (S3),  
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The Maclaurin series expansion for the above equation under the conditions in (S16) 

is given by,  
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In Area III , we have  
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In summary, the approximations for ZttZ ),( , and peakZ  in Areas I, II , and III are as 

follows:  
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It should be noted that these approximations become closer to the numerical value if 

the parameter h  becomes smaller than 1, where the parameter set is far from the boundaries 

of the areas. Each approximation of 
Zt  and peakZ  is equal to each other at the boundaries of 

the areas.  

Note that the term 
d

c
 (= k ) scales approximated )(tZ  and peakZ  in all the three 

areas uniformly. Therefore, E  was defined in main text as  

 
peak

peak

Y

Z

k
E ⋅=

1
.  (S20) 

 

 

A function included in the peak amplitudes increases strictly 

monotonically  

peakY  and peakZ  are represented by the form  

 ),(ufA ⋅   

where  

 uuuf −1

1

=)( .  (S21) 

For example, peakZ  in area I, dcA /=  and bau /= .  

Here, we show that )(uf  is a strictly monotonically increaseing function where 



0>u . The derivative of )(uf is  
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 Because 0>1)( 2−uu  at 1≠u  and 0>1

1

uu − , we show  

 ,0>1)()(log=)( −− uuuug  

where 1≠u . 

The derivative of the function g(u) is  
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Therefore, 0)( >ug  where 0>u  and 1≠u . This result proves that the function 

)(uf  increases monotonically where for 0>u  and 1≠u . 

 

If 1=u , we have  
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which includes two indeterminate forms. Applying L’Hospital’s rule twice we have 
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This result proves that )(uf  is increasing function at 1=u .  

 

 In summary, we obtained  
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where 0>u , and we found that the function )(uf  increases strictly monotonically for 

0>u . Consequently we have 
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We used this relationships in Supplementary Table S1. The function f  is indicated 



in Supplementary Fig. S1b as )/(= bafYpeak . 

 

 

Estimation of signal transfer efficiency from peak times 

The signal transfer efficiency E was defined in main text as  
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where dck /= , which means the gain. 

In area I, the signal transfer efficiency E is 1 because the approximation of peakZ  is 

equal to peakYk ⋅ . 

In area II,  
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In area III,  
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In summary,  
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 where 
YZ ttt −∆ = . 

We summarized these equations and found that the conditions for area II include 

ba >  and that the coefficient is the smaller value, b . In other words, the coefficient of t∆  



is a  or b , whichever is smaller. The conditions for area III include ab > , and the 

coefficient is the smaller value, a . Therefore we introduced a similar coefficient as follows:  

 .exp= 
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We estimated the value of E  from the equation in (S25) and the numerical value of 

t∆ . We compared the estimated E  to the numerical value of E  and found that the 

difference in the estimation was more than 80% around the borders of areas II and III. We 

also found that using equation (S26) instead of (S25) improved the error near the border.  

 

 

Parameter estimation of the activator model and selection of experimental 

data sets for validation of the attenuation property of signal transfer 

efficiency 

The parameters of the activator model were estimated using experimental data 

(Supplementary data 1) according to two methods in series. First, a meta-evolutionary 

programming method was used to approach the neighborhood of the local minimum. Second, 

the Nelder-Mead method was used to reach the local minimum. Using these methods, the 

parameters were estimated to minimize the objective function value, which was defined as 

the sum of the square residuals between our measurements and the model trajectories. 

We made two minor modifications to the activator model as follows. First, the output 

of the low-pass filter ))(( tZ  was given a delay time l  because some downstream molecule 

of the pathway, the experimental counterpart of )(tZ , seemed to have a delay time. 

Accordingly, )(tZ  was modified to )( ltZ − , and )( ltZ −  was set as 0 at lt < . Second, the 

parameter a , b  and x  can have different and arbitrary values for respective time courses 

in a pathway. Please note that other parameters ( c , d  and l ) could have a common value 

for respective time courses in a pathway. In other words, if we have 6 sets of experimental 

time course from a single pathway, the 21 paramters (
1a  ~ 

6a , 
1b  ~ 

6b , c , d , l , and 
1x  

~ 
6x ) were estimated at once. These modification satisfyes the conditions (a) and (b) but not 

for condition (c) shown in Disucussion.  

There may be some interplay between the signalling dynamics and the ability to 

estimate parameters. However, our modeling framework is suitable for the analysis of 

transient time courses, and time courses of our experimental data are almost transient. 

Therefore, the parameters were correctly estimated by these data sets.  



After 200 independent estimations, we selected the model with the minimum 

objective function value. The estimated parameters are shown in supplementary data , and 

the time courses of the estimated model are shown in supplemental data.  

 

In the selected model, we calculated normalized RSS as follows and we excluded the 

set of the time course whose model does not satisfy any of the following inequations:  
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where i  and j  represents the doses and the time points, respectively. We confirmed that 

choice of the cutoff values for normalized RSS has little effect on our results. We also 

excluded the inhbitor experiments and the set of the time courses whose duration of upstream 

signal (
2/1t ) or peak amplitudes coud not be obtained by experiment because of sustained 

response or nonresponsive to the stimuli. We selected the rest of the time courses which 

satisfy the conditions (a) and (b), and analyzed their experimental data for Figure 3. 
2/1t  was 

obtained by linear interpolation of the experimental time course of the upstream molecule. 

The time constant of the pathway τ  was obtained as d/1  of the model. The signal transfer 

efficiency ( E ) was obtained from the ratio of the peak amplitudes of the experimenatl time 

courses and then divided by dck /=  of the model. Then E  was plotted against 
τ

2/1t  with 



the theoretical line in Figure 3 (for derivation of the theoretical line, see Fig. S3). 

 

 

Proof of EC50 decrease in the activator model 

We already found that uuuf −= 1

1

)(  for 0>u  is strictly monotonically increasing function 

(equation (S23)). In this section, we show other three characteristics of )(uf  and then proof 

of EC50 decrease in the activator model. We also show the relationships between sensitivity 

increase index (
iS ) and the negative regulation of the pathway ( d ). 

 

First, we show 1)(0 << uf . For limit on 0→u , we have 
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From these results and equation (S23), we found 

 1)(0 << uf  (S27) 
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Then we found  
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 Third, we show that the solution of
2

1
)( =uf  is 2=u . We have  
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Together with strictly monotonically increasing characteristics of )(uf  (equation (S23)), 

we found 

 2
2

1
)( =⇔= uuf . (S29) 

 



 Finally, we prove the decrease of EC50 in the downstream molecule of the activator 

model. EC50 was defined as the concentration of the activator which induce the 50% of 

maximum response. In this section, a  is regarded as the concentration of the activator.  

  

Consider the EC50 of peakY  using analytical solution. From equations (S6) and (S21),  
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and from equation (S27), we found that maximum response of peakY  is 1. Therefore, at the 

EC50 
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From equation (S29), we have 
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Thus, the EC50 of peakY  is obtained as b2 . 

  

Consider the EC50 of peakZ  using approximated analytical solution.  

In Area II, from equation (S15), 
peakZ  should not be affected by a .  

In Area I, from equations (S11) and (S21),  
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From equation (S23), peakZ  monotonically increases for a , and from equation (S7), 



expression of peakZ  is switched to that for Area II where da ≥ . Therefore, the maximum 

response of peakZ  is same as the peakZ in Area II, and 
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and at the EC50 of peakZ , a  should satisfy following equation 
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Because 
peakZ  monotonically increases for a  (from equation (S23)), the EC50 of 

peakZ  

reaches the maximum when the right hand side of equation (S31) reaches the maximum. 

From equation (S27), the maximum of the right hand side is  
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Therefore, the maximum of the EC50 of peakZ  is 
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and is the same as EC50 of peakY  (equation (S30)). Thus, it is proved that the EC50 of peakZ  

should be equal or smaller than that of peakY  in Area I.  

In Area III, from equations (S19) and (S21),  
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From equation (S28),  
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From equation (S23), peakZ  monotonically increases for a , and from equation (S7), 

expression of peakZ  is switched to that for Area II where ba ≥ . Therefore, the maximum 

response of peakZ  is same as the peakZ in Area II, and  
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and at the EC50 of peakZ , a  should satisfy following equation 
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Using equation (S28), we have 
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Because peakZ  monotonically increases for a  (from equation (S23)), the EC50 of peakZ  

reaches the maximum when the right hand side of equation (S31) reaches the maximum. 

From equation (S27), the maximum of the right hand side is  
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Therefore, the maximum of the EC50 of peakZ  is 
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From equation (S7), bd <  in Area III. Therefore, it is proved that the EC50 of peakZ  should 

be smaller than the EC50 of peakY  (equation (S30)).  

Thus, it is proved that the EC50 of peakZ  should be equal or smaller than that of 

peakY .  

 

 Additionally, we show the relationships between sensitivity increase index ( iS ) and 

the negative regulation of the pathway ( d ). In the main text, iS  was defined as 
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From figure S1b, we found that )(uf  is almost same to its maximum value in 1>>u . 

Therefore, the EC50 of peakZ  can be approximated by its maximum value,  
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Together with equations (S30) and (S37), we have  
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This result means that 
iS  reaches 1 when d  became larger than b , and 

iS  increases as 

the inverse of  d  when d  became larger than b . This description is equivalent to the 

descriptions for Figure 4e. Equations (S30), (S38), and (S39) are shown in figure S4 d, e, and 

f, respectively. In figure S4g, equation (S39) are compared with numerical results (Figure 4e). 

We confirmed that the approximation used in equations (S38) and (S39) does not affect the 

qualitative characteristics of the EC50 for peakZ  and iS . 

 

 

Inhibitor model 

The inhibitor model can be described by the ordinary differential equations as follows: 
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where the parameters p  and q  denote the forward and reverse rate constants of the 

inhibitor reactions, respectively (see Fig. 5a). The initial conditions were given as follows: 
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 where the parameter x  denotes the total initial amount of the sum of X  and W . 

The analytical solution of the equations is as follows:  

 

( )

( ) ( ){ }

( )
( )

( )
( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )( )

( )
( )( )( )
























−++

+++
+

−++

+++
−





++−

+
−

++−

+

+
=









++

+++
−

+−

+
−

+−

+

+
=

+−+
−+

=

−
−+

=

−−

−

bddd

da

bdbb

ba

db

a

db

a

qp

acqx
tZ

bb

ba

b

a

b

a

qp

aqx
tY

aa
qp

qx
tX

qp

px
tW

dtbt

tt

bttt

tt

tt

βα

βα

βα

βα

ββαβ

α

αααβ

β

βα

βα

βαβ

α

ααβ

β

αβ
αβ

αβ
αβ

βα

βα

βα

βα

ee

)(

e

)(

e
)(

e

)(

e

)(

e
)(

ee
))((

)(

ee
))((

)(

 (S42) 

where  
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 and db −≠−≠≠ βα . 

In the analysis of the inhibitor model (Fig. 5; Supplementary Fig. S5 and S6), the 

parameter x  was set as 1 for convenience and simplicity without a loss of generality. 

 

 

Parameter estimation of the inhibitor model 

The parameters of the inhibitor model were estimated using experimental data (Fig. 6) 

according to two methods in series as described above.  

We made two minor modifications to the inhibitor model as follows. First, the 

parameter p  was scaled according to the inhibitor concentration. Second, the output of the 

low-pass filter ))(( tZ  was given a delay time l  because pS6, the experimental counterpart 

of )(tZ , seemed to have a delay time. Accordingly, )(tZ  was modified to )( ltZ − , and 

)( ltZ −  was set as 0 at lt < . 

After 20 independent estimations, we selected the model with the minimum objective 

function value. The estimated parameters are  
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where inhibitor concentrations were set as 0, 5, 15, 50, 150, 500, 1500, and 5000 [nM]. The 

time courses of the estimated model are shown in Supplementary Fig. S7. 

 

 

In vivo inhibitor model 

The in vivo inhibitor model can be described using ordinary differential equations as follows: 
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where the parameter r  denotes the synthesis and degradation rate constants of the turnover 

reactions of X (see Supplementary Fig. S8a). We assumed that the activator was administered 

and reached an equilibrium before inhibition and set the initial conditions as follows: 
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Supplementary Note 2 

Negative regulation 

Changing the amount of an activator or inhibitor is a straightforward way of controlling the 

cellular response. However, controlling the concentrations of activators and inhibitors is not 

always possible. For example, cells should autonomously control the sensitivity to 

unexpected external stimuli, such as toxins and pathogens. The mechanism we proposed may 

be one of the solutions used under such conditions.  

Negative regulation can include any type of reaction in a signalling pathway, such as 

degradation or dephosphorylation, and the rate constants of negative regulation can reflect 

the amount of an enzyme, such as a protease or phosphatase. Therefore, cells can control the 

signal transfer efficiency and sensitivities to activators and inhibitors by changing the 

expression levels of such enzymes. Different expression levels of these enzymes may 

account for the different sensitivities to activators or inhibitors among individual cells and 

cell lines. In addition, these enzymes reportedly have strong effects on the temporal patterns 

of signals and sensitivities to activators
8,12,29-31

.  

 

Conditions about the analysis of sensitivity control 

Analysing the control of sensitivity to activators and inhibitors, in this study, requires the 

following three conditions: (a) the pathway of interest can be approximated by a consecutive 

first-order reaction, (b) the time course of the upstream molecule can be expressed as the sum 

of two exponential curves, and (c) the dose-dependent time courses of the upstream molecule 

can be expressed by changing the value of a as the doses of an activator or the value of p as 

the doses of an inhibitor while other parameters remain fixed (Figs. 4-6). On the contrary, 

analysing the attenuation of signal transfer efficiency, in this study, requires only the first two 

conditions (Fig. 3). The sensitivity control reflects the relationship between an activator (or 

an inhibitor), Y, and Z. In contrast, the attenuation of signal transfer efficiency depends on the 

relationship between Y and Z but not between an activator (or an inhibitor) and Y. Therefore, 

the analysis of sensitivity control requires conditions that are more stringent. Condition (a) 

reflects that the elementary reactions of the pathways are not necessarily exact first-order 

reactions. For example, the Michaelis–Menten type of enzymatic reaction is not an exact 

first-order reaction, but it can be approximated by a first-order reaction when the substrate is 

abundant
32

. Even a signalling pathway involving multistep reactions that are more complex 

can be approximated by consecutive first-order reactions (Fig. 3)
23

. However, pathways 

including high-order reactions or feedback effects may not be able to be adequately 

approximated by a consecutive first-order reaction. Additionally, condition (b) may not be 

satisfied in pathways that include signalling molecules whose time courses are sustained or 

oscillate. Condition (c) may not be satisfied when there are high-order reactions between Y 

and the activator or the inhibitor. 



 

Comparing to previous studies about sensitivity 

In this study, we analysed the sensitivity differences in the peak amplitudes in a consecutive 

first-order reaction. The sensitivity differences in the equilibrium amplitudes have previously 

been analysed, and the depletion of the substrate in a biochemical reaction has been shown to 

control the sensitivity
16-18

. For example, consider the phosphorylation and dephosphorylation 

of a substrate in equilibrium. A kinase is activated by an activator and phosphorylates the 

substrate; the phosphorylated substrate (product) is then dephosphorylated and returns to 

being a substrate. The activated kinase and the product can be regarded as the upstream and 

downstream molecules of the biochemical reaction. Increasing the dose of the activator 

increases the amount of activated kinase. The substrate is phosphorylated by the activated 

kinase, and in the presence of an excess of activated kinase, the substrate is consumed and 

eventually depleted. When the substrate is depleted, further increases in the amount of 

activator do not increase the amount of product, although the amount of activated kinase is 

increased. Therefore, the product reaches a plateau before the activated kinase reaches a 

plateau, and the EC50 for the product is smaller than the EC50 for the activated kinase when 

the substrate is depleted. Thus, the depletion of the substrate can induce an increase in 

sensitivity.  

In contrast, when the amount of substrate is not changed, an enzymatic reaction can be 

approximated by a first-order reaction, as described above. Because the first-order reaction 

ignores the depletion of the substrate, the consecutive first-order reaction examined in this 

study is not influenced by the depletion effect. Thus, the mechanism responsible for the 

control of sensitivity in this study differs from that in previous studies
16-18

. General 

biochemical reactions, including the Michaelis–Menten type of enzymatic reaction, possess 

the intrinsic characteristics of both the depletion effect and the attenuation of signal transfer 

efficiency. Therefore, both characteristics may generally contribute to the control of 

sensitivity. Reportedly, sensitivity can also be controlled by the characteristics of network 

motifs, such as a negative feedback loop or an incoherent feed-forward loop6,10,19,20. 

 

Extent of the attenuation of signal transfer efficiency 

The attenuation of signal transfer efficiency may be involved in many cellular processes. For 

example, the process of gene expression comprises both the synthesis and the degradation 

(i.e., negative regulation) of the gene product. The synthesis is induced by the activities of 

upstream signalling molecules, and the degradation of the gene product depends on the actual 

amount of gene product present. This process can be approximated by a consecutive 

first-order reaction, where the activities of the upstream signalling molecule and the gene 

product can be regarded as Y and Z in the activator model, respectively20,33-35. In general, the 

synthesis and degradation rate constants for the time course of the cellular signalling pathway 

are larger than the degradation rate constant of the gene product
35

, suggesting that the 



attenuation of signal transfer efficiency can be observed in signalling-dependent gene 

expression. Indeed, we found that ERK-dependent c-FOS expression could be approximated 

by a consecutive first-order reaction, and attenuation of signal transfer efficiency was 

observed (Supplementary Data 2). We could not examine the downstream sensitivity to 

growth factors of the pathway because EGF-dependent ERK activation did not satisfy 

condition (c). However, in a signalling pathway that satisfies conditions (a), (b), and (c), the 

gene product may be more sensitive than the upstream signalling molecule to growth factors. 

The gene expression system may use this characteristic to increase its sensitivity to growth 

factors. 

The attenuation of signal transfer efficiency should be considered when interpreting 

experimental data. For example, a luciferase assay system is used as a reporter for promoter 

activity. Because luciferase expression is regulated both by synthesis and degradation, the 

process of luciferase expression can be approximated using a consecutive first-order reaction. 

Therefore, luciferase activity may be more sensitive to stimulation than the promoter activity 

is, and the increase in sensitivity may depend on the rate of luciferase degradation. Therefore, 

perhaps a luciferase variant with enhanced sensitivity could be designed by decreasing the 

degradation rate. At the same time, this phenomenon also means that the luciferase activity 

may potentially overestimate the promoter activity. To avoid such an overestimation, the rate 

of luciferase degradation should be increased (compared with that of the signalling pathway) 

so that the luciferase activity shows a sensitivity similar to that of the promoter activity
36

. 

However, as the rate of luciferase degradation increases, the amount of luciferase decreases, 

and the lower detection limit of luciferase decreases. Therefore, a trade-off exists between 

the lower detection limit of luciferase and the decrease in overestimation. Other probe 

systems, such as fluorescence resonance energy transfer probes and calcium ion indicators, 

which have a similar synthesis and degradation framework, share the same problem. 

Consecutive first-order reactions can control the sensitivity of downstream molecules to 

an inhibitor, indicating that the downstream molecule is not always inhibited as strongly as 

an upstream molecule, even if the target molecule of the inhibitor is inhibited successfully or 

the downstream network of the target molecule is simple. The sensitivities of the downstream 

responses to several EGFR inhibitors are reportedly lower than the sensitivities of the 

upstream molecules2,3,7,37. The characteristics of the consecutive first-order reaction may 

contribute to these decreases in sensitivity, although the decreases in sensitivity may also be 

caused by other factors, such as the depletion effect in biochemical reactions and the 

characteristics of network motifs.  
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